Machine Learning-Assisted High-Throughput Molecular Dynamics Simulation of High-Mechanical Performance Carbon Nanotube Structure

Author:

Xiang Yi,Shimoyama Koji,Shirasu Keiichi,Yamamoto GoORCID

Abstract

Carbon nanotubes (CNTs) are novel materials with extraordinary mechanical properties. To gain insight on the design of high-mechanical-performance CNT-reinforced composites, the optimal structure of CNTs with high nominal tensile strength was determined in this study, where the nominal values correspond to the cross-sectional area of the entire specimen, including the hollow core. By using machine learning-assisted high-throughput molecular dynamics (HTMD) simulation, the relationship among the following structural parameters/properties was investigated: diameter, number of walls, chirality, and crosslink density. A database, comprising the various tensile test simulation results, was analyzed using a self-organizing map (SOM). It was observed that the influence of crosslink density on the nominal tensile strength tends to gradually decrease from the outside to the inside; generally, the crosslink density between the outermost wall and its adjacent wall is highly significant. In particular, based on our calculation conditions, five-walled, armchair-type CNTs with an outer diameter of 43.39 Å and crosslink densities (between the inner wall and outer wall) of 1.38 ± 1.16%, 1.13 ± 0.69%, 1.54 ± 0.57%, and 1.36 ± 0.35% were believed to be the optimal structure, with the nominal tensile strength and nominal Young’s modulus reaching approximately 58–64 GPa and 677–698 GPa.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3