Abstract
The detection of emerging contaminants in the aquatic environment, such as ibuprofen and caffeine, was studied by means of surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticles (AgNPs) synthesized with β-cyclodextrin (βCD) as a reducing agent. The effect on the SERS signal of different molar ratios of Ag+/βCD in the synthesis route and the aging process of AgNPs were investigated by using trans-cinnamic as a test molecule. The SERS effectiveness of these β-cyclodextrin colloids (Ag@βCD) was also checked and compared with that of other silver sols usually employed in SERS synthesized by using other reducing agents such as citrate, borohydride and hydroxylamine. All the synthesized SERS substrates were characterized by different techniques. The experimental results indicate that Ag@βCD with the more diluted Ag+/βCD molar ratio showed the best SERS signal, enabling detection at trace concentrations of 0.5 µM in the case of trans-cinnamic acid. The Ag@βCD sols also showed the best sensitivity for detecting ibuprofen and caffeine, reaching the lowest limit of detection (0.1 mM). The proposed synthetic route for Ag@βCD sols provides an improved SERS substrate for detecting organic pollutants with better performance than other standard silver sols.
Subject
General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献