Graphene Oxides Derivatives Prepared by an Electrochemical Approach: Correlation between Structure and Properties

Author:

Sainz-Urruela CarlosORCID,Vera-López SoledadORCID,San Andrés MaríaORCID,Díez-Pascual AnaORCID

Abstract

Graphene oxide (GO) can be defined as a single monolayer of graphite with oxygen-containing functionalities such as epoxides, alcohols, and carboxylic acids. It is an interesting alternative to graphene for many applications due to its exceptional properties and feasibility of functionalization. In this study, electrochemically exfoliated graphene oxides (EGOs) with different amounts of surface groups, hence level of oxidation, were prepared by an electrochemical two-stage approach using graphite as raw material. A complete characterization of the EGOs was carried out in order to correlate their surface topography, interlayer spacing, defect content, and specific surface area (SSA) with their electrical, thermal, and mechanical properties. It has been found that the SSA has a direct relationship with the d-spacing. The EGOs electrical resistance decreases with increasing SSA while rises with increasing the D/G band intensity ratio in the Raman spectra, hence the defect content. Their thermal stability under both nitrogen and dry air atmospheres depends on both their oxidation level and defect content. Their macroscopic mechanical properties, namely the Young’s modulus and tensile strength, are influenced by the defect content, while no correlation was found with their SSA or interlayer spacing. Young moduli values as high as 54 GPa have been measured, which corroborates that the developed method preserves the integrity of the graphene flakes. Understanding the structure-property relationships in these materials is useful for the design of modified GOs with controllable morphologies and properties for a wide range of applications in electrical/electronic devices.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3