Hydrophobic Ionic Liquids for Efficient Extraction of Oil from Produced Water

Author:

Liaqat Shehzad,Khan Amir Sada,Akbar Noor,Ibrahim Taleb H.,Khamis Mustafa I.ORCID,Nancarrow PaulORCID,Siddiqui RuqaiyyahORCID,Khan Naveed AhmedORCID,Abouleish Mohamed Yehia

Abstract

Produced water contaminated with oil has adverse effects on human health and aquatic life. Providing an efficient method for the removal of oil from produced water is a challenging task. In this study, the effects of carbon chain length and the cation nature of ionic liquids (ILs) on the removal efficiency of oil from produced water were investigated. For this purpose, seven ILs containing the bis (trifluoromethylsulfonyl) imide (NTf2) anion, and various cations such as imidazolium, pyridinium, phosphonium, and ammonium, were employed for the removal of oil from produced water via liquid–liquid extraction. The effects of process parameters such as the initial concentration of oil in produced water, contact time, pH, salinity, phase ratio, and temperature on the removal efficiency of oil were studied and optimized. 1-Decyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C10mim][NTf2]) (IL4) was found to give the highest oil extraction efficiency of 92.8% under optimum conditions. The extraction efficiency was found to increase with increasing cation alkyl chain length from C2 to C10. The extraction efficiency of ILs based on cations follows the order imidazolium > ammonium > phosphonium > anpyridinium. Fourier Transform infrared spectroscopy (FTIR) was used to explore the ILs interaction with oil using [C10mim][NTf2] as a model. In addition, 1H and 13C NMR spectra were recorded to obtain a better understanding of the molecular structure of IL and to investigate the peak shifts in H and C atoms. Moreover, the cell viability of the most efficient IL, [C10mim][NTf2], in human cells was investigated. It has been concluded that this IL exhibited minimal cytotoxic effects at lower concentrations against human cell lines and is effective for the extraction of oil from aqueous media.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3