On the Moving of Neutral Point for Mn Subject to Submerged Arc Welding under Various Heat Inputs: Case Study into CaF2-SiO2-Na2O-MnO Agglomerated Fluxes

Author:

Zhang Dan,Shao Guoyou,Zhang Jin,Liu Zhongqiu

Abstract

Neutral Point indicates the flux formula where no transfer of alloying element between the flux and weld metal occurs. For the submerged arc welding process, Neutral Point is an essential definition for flux design and specification since it helps to identify the flux microalloying ability. The scientific hypothesis that the Neutral Point is only a function of the flux formula is considered as the basis of the Mitra kinetic model. Within this framework, by performing submerged arc welding with CaF2-SiO2-Na2O-MnO agglomerated fluxes under various heat inputs, the moving of Neutral Point has been captured, indicating the scientific hypothesis proposed in Mitra kinetic model may be revised under high heat input welding. Additionally, although some studies have incorporated the consideration of the gas-slag-metal equilibrium, only the effective equilibrium temperature of 2000 or 2100 °C is utilized, which may be insufficient to constrain Mn content in the weld metal. In this study, we have incorporated all possible effective equilibrium temperatures that may be attained in the submerged arc welding process to simulate the transfer behavior of Mn. Then, a novel thermodynamic approach is proposed to detect the moving direction of Neutral Point for Mn from both slag-metal and gas-slag-metal equilibrium considerations, which may pave a vital way for the flux design and the setting of welding parameters. The factors responsible for the deviation between real and predicted data are discussed. The mechanism responsible for the moving of Neutral Point regarding the Mn element is evaluated from the perspective of both slag-metal and gas-slag-metal equilibrium considerations.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Initial Fund of Suqian University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference31 articles.

1. Nature and Behavior of Fluxes Used for Welding

2. Physical and Chemical Behavior of Welding Fluxes

3. Prediction of Element Transfer in Submerged Arc Welding;Kanjilal;Weld. J.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3