Study of Plasma Interaction with Liquid Lithium Multichannel Capillary Porous Systems in SCU-PSI

Author:

Liu Jianxing,Jing Wenna,Guo Hengxin,Gao Yingwei,Wang Sishu,Chen Bo,Chen Jianjun,Wang Hongbin,Wei Jianjun,Ye Zongbiao,Gou Fujun

Abstract

In this paper, an embedded multichannel capillary porous system (EM-CPS) was designed and fabricated with 304 stainless steel using the laser ablation method. The EM-CPS revealed its excellent ability to wick liquid lithium to its surface effectively. The interaction between Li-prefilled EM-CPS and plasma was studied, and the results showed that the surface temperature decreased by ~140 °C compared with the results of the experiment of EM-CPS without lithium filling. Additionally, EM-CPS displayed a better heat transfer performance and stronger radiation loss of the vapor cloud than the traditional woven tungsten-based meshes. In addition, the drift of the lithium vapor cloud center was found during plasma irradiation and led to a decrease in the intensity of the Li 670.78 nm emission line detected by the spectrometer at the observation point. When the thermal load deposited on the sample surface is reinforced by increasing the magnetic field, the rise in surface temperature is restrained due to the enhanced heat dissipation capability of lithium. SEM images of irradiated samples showed that the 304 stainless steel-based EM-CPS has corrosion problems due to the interaction between liquid lithium and argon plasma, but it still showed good plasma-facing characteristics. These findings provide a reference for further studies of embedded multichannel CPSs with plasma-facing components (PFCs) in linear plasma devices and tokamaks in the future.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3