Abstract
Background: In maxillofacial surgery, critical size mandibular defects remain a challenging issue. There have been numerous attempts to improve mandibular defect healing. Recently, bone tissue engineering has provided many benefits in improving bone healing. Herein, we tried to investigate the effect of Mineralized plasmatic matrix (MPM) and Chitosan to enhance tissue healing and regeneration in mandibular bone defect. Methods: A mandibular bone defect of critical size was created in 45 New Zealand rabbits. There were three groups of rabbits: the MPM group, the Chitosan group, and the control group. Radiographical, histological, and immune histochemical evaluations were performed at 4, 8, and 12 post-operative weeks. Results: The MPM group demonstrated the highest degree of bone formation with uniform radio-opacity nearly like that of adjacent healthy parent tissue. While in the chitosan group, most of the defect area was filled with radio-opaque bone with persistent small radiolucent areas. The control group showed less bone formation than the MPM and chitosan group, with more radiolucent areas. Sections stained with (H&E) demonstrated an increase in osseous tissue formation in both the MPM and chitosan groups. Staining with Masson’s trichrome revealed an increase in fibrous connective tissue proliferation in both the MPM and chitosan groups. In both the MPM and chitosan groups, nuclear factor kappa p65 was downregulated, and matrix metalloproteinase-9 was upregulated. Conclusion: According to the current study, MPM and Chitosan may have beneficial effects on the healing of critical-sized mandibular bone defects.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering