Abstract
Unmanned aerial vehicle edge networks (UENs) can reduce the cache load of the core network and improve system performance to provide users with efficient content services. However, the time-varying characteristics of content popularity in UENs lead to a low accuracy of popularity prediction, and the capacity limitations of wireless channel conditions lead to a lower cache hit rate than the rates of traditional fiber-optic-based cache strategies. Therefore, this paper proposes the discrete artificial bee colony cache strategy of UENs (DABCCSU). First, the information–dynamics–dissemination model of UENs (IDDMU) is established to deduce the coupling relationship between the channel capacity and the service probability in IDDMU. The influence of the service probability change on the content dissemination process is discussed, and the content popularity in UENs is predicted by the state iteration matrix. Then, the discrete artificial bee colony cache (DABCC) optimization algorithm is proposed. The action function of the artificial bee colony is designed as a random action based on the historical cache strategy. The discrete cache strategy is used as an optimization variable, and the popularity prediction result obtained by IDDMU is used to maximize the cache hit rate. DABCC provides the optimal cache strategy for the UENs, and effectively improves the cache hit rate. The simulation result shows that the accuracy of DABCCSU in content popularity prediction is more than 90%, which achieves a good prediction effect. In terms of cache performance, the average cache hit rate of DABCCSU is 91.62%, which is better than the 51.09% of the Least Recently Used (LRU) strategy, 89.27% of the Greedy Algorithm (GA) and 54.26% of Binary Particle Swarm Optimization (BPSO). In addition, the cache hit rate of DABCCSU under different cache capacities is better than that of LRU, GA, and BPSO, showing a relatively stable performance. It shows that DABCCSU can achieve excellent content popularity prediction, and it can also maximize the cache hit rate under limited communication resources and cache resources to provide UENs with the optimal content cache strategy, and provides users with high-quality content services.
Funder
Sub Project of National Key Research and Development plan in 2020
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献