Research on Discrete Artificial Bee Colony Cache Strategy of UAV Edge Network

Author:

Hong YangORCID,Zhang Yuexia,Fan Shaoshuai

Abstract

Unmanned aerial vehicle edge networks (UENs) can reduce the cache load of the core network and improve system performance to provide users with efficient content services. However, the time-varying characteristics of content popularity in UENs lead to a low accuracy of popularity prediction, and the capacity limitations of wireless channel conditions lead to a lower cache hit rate than the rates of traditional fiber-optic-based cache strategies. Therefore, this paper proposes the discrete artificial bee colony cache strategy of UENs (DABCCSU). First, the information–dynamics–dissemination model of UENs (IDDMU) is established to deduce the coupling relationship between the channel capacity and the service probability in IDDMU. The influence of the service probability change on the content dissemination process is discussed, and the content popularity in UENs is predicted by the state iteration matrix. Then, the discrete artificial bee colony cache (DABCC) optimization algorithm is proposed. The action function of the artificial bee colony is designed as a random action based on the historical cache strategy. The discrete cache strategy is used as an optimization variable, and the popularity prediction result obtained by IDDMU is used to maximize the cache hit rate. DABCC provides the optimal cache strategy for the UENs, and effectively improves the cache hit rate. The simulation result shows that the accuracy of DABCCSU in content popularity prediction is more than 90%, which achieves a good prediction effect. In terms of cache performance, the average cache hit rate of DABCCSU is 91.62%, which is better than the 51.09% of the Least Recently Used (LRU) strategy, 89.27% of the Greedy Algorithm (GA) and 54.26% of Binary Particle Swarm Optimization (BPSO). In addition, the cache hit rate of DABCCSU under different cache capacities is better than that of LRU, GA, and BPSO, showing a relatively stable performance. It shows that DABCCSU can achieve excellent content popularity prediction, and it can also maximize the cache hit rate under limited communication resources and cache resources to provide UENs with the optimal content cache strategy, and provides users with high-quality content services.

Funder

Sub Project of National Key Research and Development plan in 2020

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3