Carbon Footprint of Manufacturing Processes: Conventional vs. Non-Conventional

Author:

Stavropoulos PanagiotisORCID,Panagiotopoulou Vasiliki Christina

Abstract

The calculation of carbon emissions is important to determine the carbon footprint and environmental impact of manufacturing processes to assess which steps could be further optimized and make processes greener and more sustainable. A previously published holistic approach to carbon footprint calculation was applied in conventional and laser-based material removal processes to determine which is the most carbon intensive one. The carbon footprint and environmental impact were calculated and the results show that conventional drilling was more carbon intensive than laser-based drilling, while the reverse was true for the case of laser-based grooving and conventional milling. This is because the cutting forces in conventional milling are higher than the cutting forces in conventional drilling due to increased mechanical resistance from the material in the first case. In the case of laser-based processes, the energy consumption is linked to material absorptivity which remained the same in this study. Carbon emissions on the process level were the lowest contributing factor, with the largest share being the production and rolling of steel allocated at the system level. The determination of the most carbon intensive steps and processes will allow companies to better design production lines towards carbon neutrality as dictated by the Green Deal.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference29 articles.

1. Global Warming: The Complete Briefing;Houghton,2009

2. 2050 Long-Term Strategy,2020

3. Reflection Paper: Towards a Sustainable Europe by 2030,2019

4. A Framework for CO2 Emission Reduction in Manufacturing Industries: A Steel Industry Case

5. Energy Efficient Process Planning System – The ENEPLAN Project

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3