Distributed Economic Dispatch Control Method with Frequency Regulator for Smart Grid under Time-Varying Directed Topology

Author:

Ji LianghaoORCID,Meng Weiqi,Yang Shasha,Li Huaqing

Abstract

The paper studies a new distributed control method to solve the economic dispatch problem (EDP) under directed topology based on consensus protocol. Electrical equipment is closely related to frequency, and the frequency of each generator varies independently during operation. Therefore, it hinders the realization of economic dispatch. To solve the problem, we combine a frequency regulator with a consensus protocol, which eliminates the effect of frequency variation on the designed consensus algorithm. Meanwhile, considering the problem of excessive communication cost and low computational efficiency in large-scale power systems, an event-triggered mechanism is introduced into the designed algorithm. Furthermore, in order to overcome the unexpected loss of communication links, the time-varying topology mechanism is employed to develop the distributed economic dispatch (DED) algorithm to improve the robustness. Then, the stability of the above algorithm is proved by graph theory and convergence analysis. Finally, several simulations illustrate that our proposed methods are effective.

Funder

National Natural Science Foundation of China

Major Scientific and Technological Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3