Abstract
Microgravity induces a number of significant physiological changes in the cardiovascular, nervous, immune systems, as well as the bone tissue of astronauts. Changes in cell adhesion properties are one aspect affected during long-term spaceflights in mammalian cells. Cellular adhesion behaviors can be divided into cell–cell and cell–matrix adhesion. These behaviors trigger cell–cell recognition, conjugation, migration, cytoskeletal rearrangement, and signal transduction. Cellular adhesion molecule (CAM) is a general term for macromolecules that mediate the contact and binding between cells or between cells and the extracellular matrix (ECM). In this review, we summarize the four major classes of adhesion molecules that regulate cell adhesion, including integrins, immunoglobulin superfamily (Ig-SF), cadherins, and selectin. Moreover, we discuss the effects of spaceflight and simulated microgravity on the adhesion of endothelial cells, immune cells, tumor cells, stem cells, osteoblasts, muscle cells, and other types of cells. Further studies on the effects of microgravity on cell adhesion and the corresponding physiological behaviors may help increase the safety and improve the health of astronauts in space.
Funder
China Postdoctoral Science Foundation
Fundamental Research Funds for the Central Universities
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献