Abstract
Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7–11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex. In the hippocampus, the α4 subunit was downregulated after the 2-month interval. Changes in receptor binding were highly dependent on the receptor type, the interval after treatment cessation, and the brain structure. GABAA receptor binding was increased in almost all of the brain structures after the 48-h interval. BZD-binding was decreased in many brain structures involved in the neuronal networks associated with emotional behavior, anxiety, and cognitive functions after the 2-month interval. Binding of the GABAB receptors changed depending on the interval and brain structure. Overall, the described changes may affect both synaptic development and functioning and may potentially cause behavioral impairment.
Funder
European Regional Development Fund
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献