Convolutional Neural Network Can Recognize Drug Resistance of Single Cancer Cells

Author:

Yanagisawa KiminoriORCID,Toratani Masayasu,Asai Ayumu,Konno Masamitsu,Niioka Hirohiko,Mizushima TsunekazuORCID,Satoh Taroh,Miyake Jun,Ogawa Kazuhiko,Vecchione Andrea,Doki Yuichiro,Eguchi Hidetoshi,Ishii Hideshi

Abstract

It is known that single or isolated tumor cells enter cancer patients’ circulatory systems. These circulating tumor cells (CTCs) are thought to be an effective tool for diagnosing cancer malignancy. However, handling CTC samples and evaluating CTC sequence analysis results are challenging. Recently, the convolutional neural network (CNN) model, a type of deep learning model, has been increasingly adopted for medical image analyses. However, it is controversial whether cell characteristics can be identified at the single-cell level by using machine learning methods. This study intends to verify whether an AI system could classify the sensitivity of anticancer drugs, based on cell morphology during culture. We constructed a CNN based on the VGG16 model that could predict the efficiency of antitumor drugs at the single-cell level. The machine learning revealed that our model could identify the effects of antitumor drugs with ~0.80 accuracies. Our results show that, in the future, realizing precision medicine to identify effective antitumor drugs for individual patients may be possible by extracting CTCs from blood and performing classification by using an AI system.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3