Interactions of the Lysosomotropic Detergent O-Methyl-Serine Dodecylamide Hydrochloride (MSDH) with Lipid Bilayer Membranes—Implications for Cell Toxicity

Author:

Villamil Giraldo Ana-Maria,Eriksson Ida,Wennmalm Stefan,Fyrner TimmyORCID,Ederth ThomasORCID,Öllinger Karin

Abstract

O-methyl-serine dodecylamine hydrochloride (MSDH) is a detergent that accumulates selectively in lysosomes, a so-called lysosomotropic detergent, with unexpected chemical properties. At physiological pH, it spontaneously forms vesicles, which disassemble into small aggregates (probably micelles) below pH 6.4. In this study, we characterize the interaction between MSDH and liposomes at different pH and correlate the findings to toxicity in human fibroblasts. We find that the effect of MSDH on lipid membranes is highly pH-dependent. At neutral pH, the partitioning of MSDH into the liposome membrane is immediate and causes the leakage of small fluorophores, unless the ratio between MSDH and lipids is kept low. At pH 5, the partitioning of MSDH into the membrane is kinetically impeded since MSDH is charged and a high ratio between MSDH and the lipids is required to permeabilize the membrane. When transferred to cell culture conditions, the ratio between MSDH and plasma membrane lipids must therefore be low, at physiological pH, to maintain plasma membrane integrity. Transmission electron microscopy suggests that MSDH vesicles are taken up by endocytosis. As the pH of the endosomal compartment progressively drops, MSDH vesicles disassemble, leading to a high concentration of increasingly charged MSDH in small aggregates inside the lysosomes. At sufficiently high MSDH concentrations, the lysosome is permeabilized, the proteolytic content released to the cytosol and apoptotic cell death is induced.

Funder

Cancerfonden

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3