Evaluation of Droplet Digital Polymerase Chain Reaction (ddPCR) for the Absolute Quantification of Aspergillus species in the Human Airway

Author:

Poh Tuang Yeow,Ali Nur A’tikah Binte Mohamed,Chan Louisa L.Y.ORCID,Tiew Pei Yee,Chotirmall Sanjay H.ORCID

Abstract

Background: Prior studies illustrate the presence and clinical importance of detecting Aspergillus species in the airways of patients with chronic respiratory disease. Despite this, a low fungal biomass and the presence of PCR inhibitors limits the usefulness of quantitative PCR (qPCR) for accurate absolute quantification of Aspergillus in specimens from the human airway. Droplet digital PCR (ddPCR) however, presents an alternative methodology allowing higher sensitivity and accuracy of such quantification but remains to be evaluated in head-to-head fashion using specimens from the human airway. Here, we implement a standard duplex TaqMan PCR protocol, and assess if ddPCR is superior in quantifying airway Aspergillus when compared to standard qPCR. Methods: The molecular approaches of qPCR and ddPCR were applied to DNA fungal extracts in n = 20 sputum specimens obtained from non-diseased (n = 4), chronic obstructive pulmonary disease (COPD; n = 8) and non-cystic fibrosis bronchiectasis (n = 8) patients where Aspergillus status was known. DNA was extracted and qPCR and ddPCR performed on all specimens with appropriate controls and head-to-head comparisons performed. Results: Standard qPCR and ddPCR were both able to detect, even at low abundance, Aspergillus species (Aspergillus fumigatus - A. fumigatus and Aspergillus terreus - A. terreus) from specimens known to contain the respective fungi. Importantly, however, ddPCR was superior for the detection of A. terreus particularly when present at very low abundance and demonstrates greater resistance to PCR inhibition compared to qPCR. Conclusion: ddPCR has greater sensitivity for A. terreus detection from respiratory specimens, and is more resistant to PCR inhibition, important attributes considering the importance of A. terreus species in chronic respiratory disease states such as bronchiectasis.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3