Tooling and Infusion Design Strategies to Reduce Trade-Offs in Forming and Infusion Quality of Multi-Textile CFRPs

Author:

Budwal Nikita,Kasper Kent,Goering Jon,Ward CarwynORCID

Abstract

Achieving right-first-time-manufacture (RFTM) of co-infused textile assemblies is challenging, without improving the accessibility to design knowledge of trade-offs between different tooling and infusion strategies. As demonstrated in previous work, the choice between a flexible or rigid mould material can result in trade-offs between dimensional accuracy and geometrical precision. Similarly, the choice of an infusion strategy can result in trade-offs in infusion quality and time. Building on past work, an investigation into forming variability across the length of six co-infused multi-textile components, with three different tooling inserts and two infusions set-ups, was conducted. To quantitatively assess variation, a method adapting principles of statistical process control was employed to analyse the yarn crimp measured from high-resolution cross-sectional scans of the components. The results were compared to a geometrical and dimensional analysis of the manufactured parts presented in a previous work. The analysis represents a method for capturing forming differences in textile preforms, which can be used to inform designs for the manufacture of textile CFRPs. The results were used to improve a hybrid rigid-flexible tooling design for an infused multi-textile component.

Funder

The Future Composites Manufacturing Hub

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference21 articles.

1. Flexible low-cost tooling solutions for a one-shot resin infusion of a 3D woven and multi-textile preform

2. Manufacturing-process-driven design methodologies for components fabricated in composite materials

3. A critical review of Knowledge-Based Engineering: An identification of research challenges

4. Composite Materials: Concurrent Engineering Approach;Sapuan,2017

5. Developing knowledge-based systems for the cost-effective product design of high-performance textile fibre-reinforced composites;Budwal;Proceedings of the Composites and Advanced Materials Expo,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3