Author:
Johann Kai S.,Reißing Adrian,Bonten Christian
Abstract
The shape and size of processed materials play a crucial role in the solid conveying characteristics of single-screw extruders. Thus, the increasing amount of plastic regrind leads to new challenges in screw extrusion. This work investigates the conveying behavior of three distinctly different material shapes in an axially as well as a helically grooved solid conveying zone. A uniform virgin polypropylene (PP) granule, an irregularly plate-shaped PP regrind and a powdery polyethylene (PE) are processed at screw speeds up to 1350 rpm. Thereby, frictionally engaged conveying in the grooves is visualized for the utilized powder. Similarly, the virgin granule is subject to forced conveying by interlocking in the grooves. The experimentally determined throughput is furthermore compared to analytical calculations which assume a so-called nut–screw conveying. It is found that these calculations perfectly predict the throughput when processing the virgin granule and the powder in a helically grooved barrel. In contrast, the analytical calculation significantly underestimates the throughput for the regrind. This underestimation is expected to be mainly caused by its plate shape and a difference in bulk density. The actual bulk density in the extruder is probably significantly higher due to both orientation and compaction effects compared to the measured bulk density that is used for the analytical calculation. Additionally, the regrind exhibits a fluctuating throughput due to the non-constant bulk density, which results from an irregular regrind shape and a broad size distribution.
Funder
Deutsche Forschungsgemeinschaft
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献