Affiliation:
1. Institute of Agricultural Science and Technology Information, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
Abstract
To quickly obtain rice plant phenotypic traits, this study put forward the computational process of six rice phenotype features (e.g., crown diameter, perimeter of stem, plant height, surface area, volume, and projected leaf area) using terrestrial laser scanning (TLS) data, and proposed the extraction method for the tiller number of rice plants. Specifically, for the first time, we designed and developed an automated phenotype extraction tool for rice plants with a three-layer architecture based on the PyQt5 framework and Open3D library. The results show that the linear coefficients of determination (R2) between the measured values and the extracted values marked a better reliability among the selected four verification features. The root mean square error (RMSE) of crown diameter, perimeter of stem, and plant height is stable at the centimeter level, and that of the tiller number is as low as 1.63. The relative root mean squared error (RRMSE) of crown diameter, plant height, and tiller number stays within 10%, and that of perimeter of stem is 18.29%. In addition, the user-friendly automatic extraction tool can efficiently extract the phenotypic features of rice plant, and provide a convenient tool for quickly gaining phenotypic trait features of rice plant point clouds. However, the comparison and verification of phenotype feature extraction results supported by more rice plant sample data, as well as the improvement of accuracy algorithms, remain as the focus of our future research. The study can offer a reference for crop phenotype extraction using 3D point clouds.
Funder
Major Core Technology Research Project of Chongqing Academy of Agricultural Sciences