Author:
Chen Yueli,Wang Lingxiao,Bernier Monique,Ludwig Ralf
Abstract
In the terrestrial cryosphere, freeze/thaw (FT) state transitions play an important and measurable role in climatic, hydrological, ecological, and biogeochemical processes in permafrost landscapes. Active and passive microwave remote sensing has shown a principal capacity to provide effective monitoring of landscape FT dynamics. The study presents a seasonal threshold approach, which examines the timeseries progression of remote sensing measurements relative to signatures acquired during seasonal frozen and thawed reference states. This is used to estimate the FT state from the Sentinel-1 database and applied and evaluated for the region of Eastern Nunavik (Québec, Canada). An optimization process of the threshold is included. In situ measurements from the meteorological station network were used for the validation process. Overall, acceptable estimation accuracy (>70%) was achieved in most tests; on the best-performing sites, an accuracy higher than 90% was reached. The performance of the seasonal threshold approach over the study region was further discussed with consideration of land cover, spatial heterogeneity, and soil depth. This work is dedicated to providing more accurate data to capture the spatiotemporal heterogeneity of freeze/thaw transitions and to improving our understanding of related processes in permafrost landscapes.
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献