Local Freeman Decomposition for Robust Imaging and Identification of Subsurface Anomalies Using Misaligned Full-Polarimetric GPR Data

Author:

Zhou HaoqiuORCID,Feng XuanORCID,Dong Zejun,Liu Cai,Liang Wenjing,An Yafei

Abstract

A full-polarimetric ground penetrating radar (FP-GPR) uses an antenna array to detect subsurface anomalies. Compared to the traditional GPR, FP-GPR can obtain more abundant information about the subsurface. However, in field FP-GPR measurements, the arrival time of the received electromagnetic (EM) waves from different channels cannot be strictly aligned due to the limitations of human operation errors and the craftsmanship of the equipment. Small misalignments between the radargrams acquired from different channels of an FP-GPR can lead to erroneous identification results of the classic Freeman decomposition (FD) method. Here, we propose a local Freeman decomposition (LFD) method to enhance the robustness of the classic FD method when managing with misaligned FP-GPR data. The tests on three typical targets demonstrate that misalignments will severely interfere with the imaging and the identification results of the classic FD method for the plane and dihedral scatterers. In contrast, the proposed LFD method can produce smooth images and accurate identification results. Besides, the identification of the volume scatterer is not affected by misalignments. A test of ice-fracture detection further verifies the capability of the LFD method in field measurements. Due to the different relative magnitudes of the permittivity of the media on two sides of the interfaces, the ice surface and ice fracture show the features of surface-like and double-bounce scattering, respectively. However, the definition of double-bounce scattering is different from the definition in polarimetric synthetic aperture radar (SAR). Finally, a quantitative analysis shows that the sensitivities of the FD and LFD methods to misalignments are related to both the type of target and the polarized mode of the misaligned data. The tolerable range of the LFD method for misalignments is approximately ±0.2 times the wavelength of the EM wave, which is much wider than that of the FD method. In most cases, the LFD method can guarantee an accurate result of identification.

Funder

National Key Research and Development Program of China

Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3