Source Cell-Phone Identification in the Presence of Additive Noise from CQT Domain

Author:

Qin Tianyun,Wang Rangding,Yan Diqun,Lin Lang

Abstract

With the widespread availability of cell-phone recording devices, source cell-phone identification has become a hot topic in multimedia forensics. At present, the research on the source cell-phone identification in clean conditions has achieved good results, but that in noisy environments is not ideal. This paper proposes a novel source cell-phone identification system suitable for both clean and noisy environments using spectral distribution features of constant Q transform (CQT) domain and multi-scene training method. Based on the analysis, it is found that the identification difficulty lies in different models of cell-phones of the same brand, and their tiny differences are mainly in the middle and low frequency bands. Therefore, this paper extracts spectral distribution features from the CQT domain, which has a higher frequency resolution in the mid-low frequency. To evaluate the effectiveness of the proposed feature, four classification techniques of Support Vector Machine (SVM), Random Forest (RF), Convolutional Neural Network (CNN) and Recurrent Neuron Network-Long Short-Term Memory Neural Network (RNN-BLSTM) are used to identify the source recording device. Experimental results show that the features proposed in this paper have superior performance. Compared with Mel frequency cepstral coefficient (MFCC) and linear frequency cepstral coefficient (LFCC), it enhances the accuracy of cell-phones within the same brand, whether the speech to be tested comprises clean speech files or noisy speech files. In addition, the CNN classification effect is outstanding. In terms of models, the model is established by the multi-scene training method, which improves the distinguishing ability of the model in the noisy environment than single-scenario training method. The average accuracy rate in CNN for clean speech files on the CKC speech database (CKC-SD) and TIMIT Recaptured Database (TIMIT-RD) databases increased from 95.47% and 97.89% to 97.08% and 99.29%, respectively. For noisy speech files with seen noisy types and unseen noisy types, the performance was greatly improved, and most of the recognition rates exceeded 90%. Therefore, the source identification system in this paper is robust to noise.

Funder

National Natural Science Foundation of China

Zhejiang Natural Science Foundation

Ningbo Natural Science Foundation

Publisher

MDPI AG

Subject

Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Fingerprinting Technologies for Smartphones Based on Embedded Transducers;IEEE Internet of Things Journal;2023-08-15

2. An End-to-End Transfer Learning Framework of Source Recording Device Identification for Audio Sustainable Security;Sustainability;2023-07-19

3. Audio Source Verification Method Based on Structural Re-parameterization Network;2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2023-06-16

4. Source Microphone Identification Using Swin Transformer;Applied Sciences;2023-06-14

5. Fingerprinting Smartphone Accelerometers with Traditional Classifiers and Deep Learning Networks;2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI);2023-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3