Comparative Transcriptome Analysis Provided a New Insight into the Molecular Mechanisms of Epididymis Regulating Semen Volume in Drakes

Author:

Hu Xinyue,Ouyang Qingyuan,Tang Bincheng,Zhang Xin,Hu Jiwei,Hu Bo,Hu Shenqiang,Li Liang,He Hua,Liu Hehe,Wang Jiwen

Abstract

Semen volume is an important factor in artificial insemination (AI) of ducks. In drakes, seminal plasma that is produced by the epididymis determines the semen volume. However, the mechanism of epididymis regulating semen volume of drakes remains unclear. Therefore, the aim of the present study was to preliminarily reveal the mechanism regulating the semen volume through comparing the epididymal histomorphology and mRNA expression profiles between drakes with high-volume semen (HVS) and low-volume semen (LVS). Phenotypically, drakes in the HVS group produced more sperm than drakes in the LVS group. In addition, compared with the HVS group, the ductal square of ductuli conjugentes (DC) and dutus epididymidis (DE) in epididymis was significantly smaller in the LVS group, and the lumenal diameter and epithelial thickness of DC/DE were significantly shorter in the LVS group. In transcriptional regulation, 72 different expression genes (DEGs) were identified from the epididymis between HVS and LVS groups. Gene Ontology (GO) analysis indicated that the DEGs were mainly related to hormone secretion, neurotransmitter synthesis/transport, transmembrane signal transduction, transmembrane transporter activity, and nervous system development (p < 0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis showed that the DEGs were significantly enriched in pathways associated with hormone and neurotransmitter transmission (p < 0.05). In addition, further analysis of the top five pathways enriched by KEGG, nine key candidate genes (including SLC18A2, SNAP25, CACNA1B, GABRG2, DRD3, CAMK2A, NR5A1, and STAR) were identified, which could play a crucial role in the formation of semen. These data provide new insights into the molecular mechanism regulating semen volume of drakes and make feasible the breeding of drakes by semen volume.

Funder

China Agriculture Research System of MOF and MARA

Key Technology Support Program of Sichuan Province

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3