Human Olfactory Receptor Sensor for Odor Reconstitution

Author:

Kuroda Shun’ichi12ORCID,Nakaya-Kishi Yukiko2,Tatematsu Kenji12,Hinuma Shuji1ORCID

Affiliation:

1. Department of Biomolecular Science and Reaction, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

2. R&D Center, Komi-Hakko Corp, 3F Osaka University Technoalliance C Bldg, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract

Among the five human senses, light, sound, and force perceived by the eye, ear, and skin, respectively are physical phenomena, and therefore can be easily measured and expressed as objective, univocal, and simple digital data with physical quantity. However, as taste and odor molecules perceived by the tongue and nose are chemical phenomena, it has been difficult to express them as objective and univocal digital data, since no reference chemicals can be defined. Therefore, while the recording, saving, transmitting to remote locations, and replaying of human visual, auditory, and tactile information as digital data in digital devices have been realized (this series of data flow is defined as DX (digital transformation) in this review), the DX of human taste and odor information is not yet in the realization stage. Particularly, since there are at least 400,000 types of odor molecules and an infinite number of complex odors that are mixtures of these molecules, it has been considered extremely difficult to realize “human olfactory DX” by converting all odors perceived by human olfaction into digital data. In this review, we discuss the current status and future prospects of the development of “human olfactory DX”, which we believe can be realized by utilizing odor sensors that employ the olfactory receptors (ORs) that support human olfaction as sensing molecules (i.e., human OR sensor).

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3