Optically Transparent Frequency Selective Surfaces with Wideband Capability for IoT Applications: A Polarization-Independent Double-Layer Design

Author:

Gunaydin Omer Faruk12ORCID,Can Sultan2ORCID

Affiliation:

1. Robert Bosch GmbH, Bursa 16140, Turkey

2. Department of Electrical and Electronics Engineering, Ankara University, Ankara 06830, Turkey

Abstract

This study proposes wide-band frequency selective surfaces (FSS) with polarization-independent characteristics that are tailored for IoT applications. The design consists of two different layers with band-stop characteristics that target key frequency bands in sub-6 GHz: 3.7 GHz (n77) and 4.5 GHz (n79), offering a 1.39 GHz bandwidth spanning from 3.61 GHz to 5.0 GHz. This study also presents a double-layer structure with a WB property with a fractional bandwidth of 32%. Simulations have been conducted to observe variations in insertion loss across incident and polarization angles ranging from 0 to 60 degrees for both TE and TM modes in the suggested FSS structures. These simulations demonstrate the design’s polarization independence. Transparent polyvinyl chloride with a dielectric constant of 2.77 and a thickness of 1.48 mm has been utilized as the substrate material. The optical transmittance is calculated to be 96.7% for Layer 1, 95.7% for Layer 2, and 92.4% for the double-layer structure, and these calculated optical transmittance values were found to be higher compared to the studies in the literature. The proposed design is well-suited for sub-6 GHz IoT applications due to their high transparency, cost-effectiveness, robust high-performance capabilities in suppression, and polarization-independent features. The results of 3D full-wave simulations were compared with measurement and the equivalent circuit model outcomes, and a good agreement between the results was observed.

Funder

Scientific Research Projects of Ankara University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3