Multi-Scale Spatial Attention-Based Multi-Channel 2D Convolutional Network for Soil Property Prediction

Author:

Feng Guolun1,Li Zhiyong1ORCID,Zhang Junbo1ORCID,Wang Mantao1

Affiliation:

1. College of Information Engineering, Sichuan Agricultural University, Ya’an 625014, China

Abstract

Visible near-infrared spectroscopy (VNIR) is extensively researched for obtaining soil property information due to its rapid, cost-effective, and environmentally friendly advantages. Despite its widespread application and significant achievements in soil property analysis, current soil prediction models continue to suffer from low accuracy. To address this issue, we propose a convolutional neural network model that can achieve high-precision soil property prediction by creating 2D multi-channel inputs and applying a multi-scale spatial attention mechanism. Initially, we explored two-dimensional multi-channel inputs for seven soil properties in the public LUCAS spectral dataset using the Gramian Angular Field (GAF) method and various preprocessing techniques. Subsequently, we developed a convolutional neural network model with a multi-scale spatial attention mechanism to improve the network’s extraction of relevant spatial contextual information. Our proposed model showed superior performance in a statistical comparison with current state-of-the-art techniques. The RMSE (R²) values for various soil properties were as follows: organic carbon content (OC) of 19.083 (0.955), calcium carbonate content (CaCO3) of 24.901 (0.961), nitrogen content (N) of 0.969 (0.933), cation exchange capacity (CEC) of 6.52 (0.803), pH in H2O of 0.366 (0.927), clay content of 4.845 (0.86), and sand content of 12.069 (0.789). Our proposed model can effectively extract features from visible near-infrared spectroscopy data, contributing to the precise detection of soil properties.

Funder

Research on Intelligent Monitoring and Early Warning Technology for rice pests and diseases of the Sichuan Provincial Department of Science and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3