Universal Causality

Author:

Mahadevan Sridhar1ORCID

Affiliation:

1. Adobe Research, 345 Park Avenue, San Jose, CA 95110, USA

Abstract

Universal Causality is a mathematical framework based on higher-order category theory, which generalizes previous approaches based on directed graphs and regular categories. We present a hierarchical framework called UCLA (Universal Causality Layered Architecture), where at the top-most level, causal interventions are modeled as a higher-order category over simplicial sets and objects. Simplicial sets are contravariant functors from the category of ordinal numbers Δ into sets, and whose morphisms are order-preserving injections and surjections over finite ordered sets. Non-random interventions on causal structures are modeled as face operators that map n-simplices into lower-level simplices. At the second layer, causal models are defined as a category, for example defining the schema of a relational causal model or a symmetric monoidal category representation of DAG models. The third layer corresponds to the data layer in causal inference, where each causal object is mapped functorially into a set of instances using the category of sets and functions between sets. The fourth homotopy layer defines ways of abstractly characterizing causal models in terms of homotopy colimits, defined in terms of the nerve of a category, a functor that converts a causal (category) model into a simplicial object. Each functor between layers is characterized by a universal arrow, which define universal elements and representations through the Yoneda Lemma, and induces a Grothendieck category of elements that enables combining formal causal models with data instances, and is related to the notion of ground graphs in relational causal models. Causal inference between layers is defined as a lifting problem, a commutative diagram whose objects are categories, and whose morphisms are functors that are characterized as different types of fibrations. We illustrate UCLA using a variety of representations, including causal relational models, symmetric monoidal categorical variants of DAG models, and non-graphical representations, such as integer-valued multisets and separoids, and measure-theoretic and topological models.

Funder

Adobe Corporation

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3