Waste Clay Bricks as a Geopolymer Binder for Pavement Construction

Author:

Migunthanna Janitha,Rajeev PathmanathanORCID,Sanjayan JayORCID

Abstract

Geopolymer binders that combine aluminosilicate materials (i.e., precursors) with alkali activators are a viable and environmentally friendly alternative to ordinary Portland cement. While fly ash, slag, silica fume, and metakaolin are the most extensively investigated precursor materials, recent studies demonstrate the feasibility of using low amorphous aluminosilicates (LAA) for geopolymer synthesis. Waste clay bricks (WCB) make an excellent LAA material for producing geopolymer binders, considering their chemical and mineralogical properties. Geopolymer binders with enhanced mechanical properties can be produced either by blending WCB with other aluminosilicate materials or by using WCB as the sole precursor, while providing appropriate production conditions, such as high-temperature curing. Until now, in pavement construction, WCB has been investigated only as a subbase material or as an aggregate for concrete. Since WCB is a potential geopolymer source material, it can also function as an alternative cementitious material (ACM), and stabilizing material in pavement construction. This work reviews the recent studies on producing WCB-based geopolymers, with the focus particularly on the properties of raw materials, activator types and their concentrations, curing conditions, blended geopolymer systems, and the mechanical properties of WCB-based geopolymer binders. Simultaneously, different pavement design requirements and currently available specifications for the use of geopolymer concrete were correlated to evaluate their feasibility as an ACM in pavement construction. Based on the current literature, WCB can be proposed as a suitable ACM to develop pavement-grade concrete and more promising results can be obtained by blending WCB with high-calcium sources, such as slag. Therefore, comprehensive studies on geopolymer concrete development, durability, and field performance are recommended.

Funder

SPARC Hub

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference114 articles.

1. Guide to pavement technology part 2,2017

2. Methods for determining the optimal solution for the rehabilitation of cement concrete road pavements;Ovidiu;Fiabil. Durabilitate,2012

3. Development of low-cost concrete for road pavements;Ioana;Rev. Romana Mater.,2012

4. Pervious concrete pavement incorporating GGBS to alleviate pavement runoff and improve urban sustainability

5. Concrete Pavement Value: Economic, Operational and Community Benefits,2020

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3