Mechanical Behaviour of ABS-Fused Filament Fabrication Compounds under Impact Tensile Loadings

Author:

Casavola ,Cazzato ,Moramarco ORCID,Renna

Abstract

In the Fused Filament Fabrication (FFF) process, the part is built as a layer-by-layer deposition of a feedstock filament material. The continuous improvements of the FFF have changed the main purpose of this technique from rapid prototyping to a rapid manufacturing method. Then, it is fundamental to determine the material properties of FFF parts as a function of the service load. The impact loads and, in particular, a high strain rates tensile impact can be a critical issue in FFF part and, in general, for plastic materials. The aim of the present work is to characterise the mechanical behaviour of FFF parts under tensile impact loads. To this purpose, three different orientations (i.e., 0°, 45° and 90°) both single- and multilayer specimens, have been printed. Finally, the influence of the impact speed on the mechanical behaviour has also been tested under three different values of speed (3.78 m/s, 3.02 m/s and 2.67 m/s). The results show that the FFF parts are influenced by the raster orientation, confirming the orthotropic behaviour also under dynamic loads, while the variation of impact speed, on peak force and absorbed energy, is limited.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3