Optimum Particle Size of Treated Calcites for CO2 Capture in a Power Plant

Author:

Quesada Carballo Luís,Perez Perez María del RosarioORCID,Cantador Fernández David,Caballero Amores AlvaroORCID,Fernández Rodríguez José MaríaORCID

Abstract

This work has analyzed the influence of the particle size of a calcite from a quarry, whether original, calcined, or rehydrated, on the efficiency of CO2 capture of the gases emitted in a coal-fired power plant. Three different particle sizes 0.5 mm, 0.1 mm, and 0.045 mm have been studied. The calcination had a minimal effect on the particle size of the smaller samples A1045 and A1M1 (<30 μm). The N2 isotherms and the CO2 adsorption isotherms at 0 °C showed a very significant increase in the surface of the calcined and rehydrated samples (A15CH, A1045CH, and A1M1CH) with respect to the calcined or original samples. The results obtained showed that the capture of CO2 for the sample A1M1, with a smaller average particle size (<30 μm, is the most effective. For the sample A1M1 calcined and completely rehydrated (Ca(OH)2), the chemical adsorption of CO2 to form CaCO3 is practically total, under the experimental conditions used (550 °C and CO2 flow of 20 mL min−1). The weight increase was 34.11% and the adsorption capacity was 577.00 mg g−1. The experiment was repeated 10 times with the same sample A1M1 calcined and rehydrated. No appreciable loss of adsorption capacity was observed.

Publisher

MDPI AG

Subject

General Materials Science

Reference44 articles.

1. The International Energy Agency (IEA)https://www.iea.org/about/

2. The Intergovernmental Panel on Climate Changehttps://www.ipcc.ch/about/

3. IPCC Special Report on Carbon Dioxide Capture and Storage

4. Carbon capture and storage (CCS): the way forward

5. Learning through a portfolio of carbon capture and storage demonstration projects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3