Author:
Yang Hao,She Xin-wei,Tang Bin-bin,Li Chun-mei,Jiang Xian-quan
Abstract
Composites of 7055 aluminum (Al) matrix reinforced with SiC particles were prepared using the spray deposition method. The volume fraction of the phase reinforced with SiC particles was 17%. The effect of the introduction of SiC particles on the deposited microstructure and properties of the composites was studied in order to facilitate the follow-up study. The structure and element enrichment zone of spray-deposited SiCp/7055 Al matrix composites were studied by Optical Microscope (OM), X-ray diffraction (XRD), Scanning Electronic Microscopy (SEM) and Transmission electron microscopy (TEM). The results show that the reinforcement phases of the SiC particles were uniformly distributed on the macro and micro levels, and a few SiC particles were segregated into annular closed regions. C and Si on the surface of SiC particles diffused to the Al matrix. The distribution of the two elements was gradient weakening with SiC particles as the center, and the enrichment zones of Si, Mg and Cu formed in the middle of the closed annular area of a few SiC particles. The enrichment zones were mainly composed of alpha-Al, SiC, Al2CuMg, Al2Cu and MgZn2. AlCu and AlMgCu phase precipitate on the surface of the SiC particles, beside the particle boundary, and had the characteristics of preferred nucleation. They tended to grow at the edges and corners of SiC particles. It was observed that the formation of nanoparticles in the alloy had a pinning effect on dislocations. The different cooling rates of the SiC particles and the Al matrix led to different aluminum liquid particle sizes, ranging from 20 to 150 μm. In the region surrounded by SiC particles, the phenomenon of large particles extruding small particles was widespread. Tearing edges and cracks continued to propagate around the SiC particles, increasing their propagation journey and delaying the fracture of the materials.
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献