Securing Embedded System from Code Reuse Attacks: A Lightweight Scheme with Hardware Assistance

Author:

An Zhenliang1,Wang Weike1,Li Wenxin1,Li Senyang1,Zhang Dexue1

Affiliation:

1. College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The growing prevalence of embedded systems in various applications has raised concerns about their vulnerability to malicious code reuse attacks. Current software-based and hardware-assisted security techniques struggle to detect or block these attacks with minor performance and implementation overhead. To address this issue, this paper presents a lightweight hardware-assisted scheme to enhance the security of embedded systems against code reuse attacks. We develop an on-chip lightweight hardware shadow stack to validate target addresses at runtime for backward-edge control flow integrity, which backs up valid return addresses during function calls and automatically verifies actual return addresses during the return phase. Additionally, we propose a lightweight stream cipher circuit that encrypts and decrypts critical stack data related to control flow manipulation, preventing attackers from analyzing or tampering with them. When designing and implementing the security mechanism for embedded systems, we fully consider the constraints of limited system resources and performance, optimizing both the architecture design and implementation of the proposed hardware. Finally, we integrate both the proposed lightweight hardware shadow stack and the runtime data encryption hardware into the OR1200 processor. We have verified the system security function on the Terasic DE1-SoC FPGA platform and evaluated the system performance as well as implementation overhead. The results show that the proposed lightweight hardware-assisted scheme can provide a dedicated defense capability against code reuse attacks for embedded systems, with an average system performance overhead of 0.39% and an area footprint of 0.316 mm2.

Funder

National Science Foundation of China

Shandong Provincial Natural Science Foundation

Qingdao West Coast New Area Science and Technology Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3