A Novel Method to Analyze the Relationship between Thermoelectric Coefficient and Energy Disorder of Any Density of States in an Organic Semiconductor

Author:

Qin Dong1,Chen Jiezhi1ORCID,Lu Nianduan2

Affiliation:

1. School of Information Science and Engineering, Shandong University, Qingdao 266237, China

2. The State key Lab of Fabrication Technologies for Integrated Circuits & Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

In this work, a unified method is proposed for analyzing the relationship between the Seebeck coefficient and the energy disorder of organic semiconductors at any multi-parameter density of states (DOS) to study carrier transport in disordered thermoelectric organic semiconductors and the physical meaning of improved DOS parameters. By introducing the Gibbs entropy, a new multi-parameter DOS and traditional Gaussian DOS are used to verify this method, and the simulated result of this method can well fit the experiment data obtained on three organic devices. In particular, the impact of DOS parameters on the Gibbs entropy can also influence the impact of the energy disorder on the Seebeck coefficient.

Funder

National Key R&D Program of China

Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3