Three-Dimensional Printing Enabled Droplet Microfluidic Device for Real-Time Monitoring of Single-Cell Viability and Blebbing Activity

Author:

Lin Meiai1,Liu Ting2,Liu Yeqian1,Lin Zequan1,Chen Jiale1,Song Jing1,Qiu Yiya1,Zhou Benqing1ORCID

Affiliation:

1. Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, China

2. Department of Biology, College of Science, Shantou University, Shantou 515063, China

Abstract

Droplet-based microfluidics with the characteristics of high throughput, low sample consumption, increasing reaction speed, and homogeneous volume control have been demonstrated as a useful platform for biomedical research and applications. The traditional fabrication methods of droplet microfluidics largely rely on expensive instruments, sophisticated operations, and even the requirement of an ultraclean room. In this manuscript, we present a 3D printing-based droplet microfluidic system with a specifically designed microstructure for droplet generation aimed at developing a more accessible and cost-effective method. The performance of droplet generation and the encapsulation capacity of the setup were examined. The device was further applied to measure the variation in cell viability over time and monitor the cell’s blebbing activity to investigate its potential ability and feasibility for single-cell analysis. The result demonstrated that the produced droplets remained stable enough to enable the long-time detection of cell viability. Additionally, cell membrane protrusions featuring the life cycle of bleb initiation, expansion, and retraction can be well-observed. Three-dimensional printing-based droplet microfluidics benefit from the ease of manufacture, which is expected to simplify the fabrication of microfluidics and expand the application of the droplet approach in biomedical fields.

Funder

2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant

Guangdong Basic and Applied Basic Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3