Direct Simulation Monte Carlo Simulation of the Effect of Needle Valve Structures on the Rarefied Flow of Cold Gas Thrusters

Author:

Lu Songcai1,Liu Xuhui1ORCID,Wang Xudong1ORCID,Zhang Shurui2,Yu Yusong2ORCID,Li Yong1

Affiliation:

1. Beijing Institute of Control Engineering, Beijing 100190, China

2. Hydrogen Energy and Space Propulsion Laboratory (HESPL), School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

The needle valve, serving as the flow control unit of the thruster system, is a crucial component of the entire thruster. Its performance directly impacts the flow state of the rarefied gas in the micro-nozzle structure of the cold gas micro-thruster, thereby exerting a significant influence on the high precision and stability of the propulsion system as a whole. This study examines the impact of different needle valve structures on the flow and thrust in micro-nozzles using the DSMC method. The analysis includes discussions on the spatial distribution, Kn distribution, slip velocity distribution, and pressure distribution of the micro-nozzle’s flow mechanism. Notably, increased curvature of the needle valve enhances the flow velocity in the throat and expansion section. The magnitude of the curvature directly affects the flow velocity, with larger curvatures resulting in higher velocities. Comparing different spool shapes, the conical spool shape minimizes the velocity gradient in the high-speed region at the junction between the spool area and the outlet pipe, particularly with a wide opening. Increasing the curvature of the spool leads to a higher velocity in the expansion section. Consequently, an arc-shaped spool valve maximizes the nitrogen flow at the nozzle during wide openings, thereby enhancing thrust. These research findings serve as a valuable reference for the structural design of the needle valve in the micro-nozzle of the cold gas micro-thruster.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3