Continuous Flow Separation of Live and Dead Cells Using Gravity Sedimentation

Author:

Ozcelik Adem1ORCID,Gucluer Sinan1ORCID,Keskin Tugce1

Affiliation:

1. Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Türkiye

Abstract

The separation of target cell species is an important step for various biomedical applications ranging from single cell studies to drug testing and cell-based therapies. The purity of cell solutions is critical for therapeutic application. For example, dead cells and debris can negatively affect the efficacy of cell-based therapies. This study presents a cost-effective method for the continuous separation of live and dead cells using a 3D resin-printed microfluidic device. Saccharomyces cerevisiae yeast cells are used for cell separation experiments. Both numerical and experimental studies are presented to show the effectiveness of the presented device for the isolation of dead cells from cell solutions. The experimental results show that the 3D-printed microfluidic device successfully separates live and dead cells based on density differences. Separation efficiencies of over 95% are achieved at optimum flow rates, resulting in purer cell populations in the outlets. This study highlights the simplicity, cost-effectiveness, and potential applications of the 3D-printed microfluidic device for cell separation. The implementation of 3D printing technology in microfluidics holds promise for advancing the field and enabling the production of customized devices for biomedical applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Passive microfluidic devices for cell separation;Biotechnology Advances;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3