Low-Temperature Adaptive Dual-Network MXene Nanocomposite Hydrogel as Flexible Wearable Strain Sensors

Author:

Chen Kai12ORCID,Lai Wenzhong1,Xiao Wangchuan1,Li Lumin1,Huang Shijun1,Xiao Xiufeng2

Affiliation:

1. School of Resources and Chemical Engineering, Sanming University, Sanming 365004, China

2. Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China

Abstract

Flexible electronic devices and conductive materials can be used as wearable sensors to detect human motions. However, the existing hydrogels generally have problems of weak tensile capacity, insufficient durability, and being easy to freeze at low temperatures, which greatly affect their application in the field of wearable devices. In this paper, glycerol was partially replaced by water as the solvent, agar was thermally dissolved to initiate acrylamide polymerization, and MXene was used as a conductive filler and initiator promoter to form the double network MXene-PAM/Agar organic hydrogel. The presence of MXene makes the hydrogel produce more conductive paths and enforces the hydrogel’s higher conductivity (1.02 S·m−1). The mechanical properties of hydrogels were enhanced by the double network structure, and the hydrogel had high stretchability (1300%). In addition, the hydrogel-based wearable strain sensor exhibited good sensitivity over a wide strain range (GF = 2.99, 0–200% strain). The strain sensor based on MXene-PAM/Agar hydrogel was capable of real-time monitoring of human movement signals such as fingers, wrists, arms, etc. and could maintain good working conditions even in cold environments (−26 °C). Hence, we are of the opinion that delving into this hydrogel holds the potential to broaden the scope of utilizing conductive hydrogels as flexible and wearable strain sensors, especially in chilly environments.

Funder

Natural Science Foundation of Fujian Province

Start-up Foundation for Advanced Talents at Sanming University

Fujian Key Project of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3