Analyzing and Optimizing the Emission Impact of Intersection Signal Control in Mixed Traffic

Author:

Fan Jieyu12,Najafi Arsalan3,Sarang Jokhio2,Li Tian1

Affiliation:

1. School of Transportation and Logistics Engineering, Shandong Jiaotong University, Jinan 264209, China

2. Department of Human Factors, Faculty of Engineering, Computer Science and Psychology, Ulm University, 89069 Ulm, Germany

3. Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Goteborg, Sweden

Abstract

Signalized intersections are one of the typical bottlenecks in urban transport systems that have reduced speeds and which have substantial vehicle emissions. This study aims to analyze and optimize the impacts of signal control on the emissions of mixed traffic flow (CO, HC, and NOx) containing both heavy- and light-duty vehicles at urban intersections, leveraging high-resolution field emission data. An OBEAS-3000 (Manufacturer: Xiamen Tongchuang Inspection Technology Co., Ltd., Xiamen, China.) vehicle emission testing device was used to collect microscopic operating characteristics and instantaneous emission data of different vehicle types (light- and heavy-duty vehicles) under different operating conditions. Based on the collected data, the VSP (Vehicle Specific Power) model combined with the VISSIM traffic simulation platform was used to quantitatively analyze the impact of signal control on traffic emissions. Heavy-duty vehicles contribute to most of the emissions regardless of the low proportion in the traffic flows. Afterward, a model is proposed for determining the optimal signal control at an intersection for a specific percentage of heavy-duty vehicles based on the conversion of emission factors of different types of vehicles. Signal control is also optimized based on conventional signal timing, and vehicle emissions are calculated. In the empirical analysis, the changes in CO, HC, and NOx emissions of light- and heavy-duty vehicles before and after conventional signal control optimization are quantified and compared. After the signal control optimization, the CO, HC, and NOx emissions of heavy-duty vehicles were reduced. The CO and HC emissions of light-duty vehicles were reduced, but the NOx emissions of light-duty vehicles remained unchanged. The emissions of vehicles after optimized signal control based on vehicle conversion factors are reduced more significantly than those after conventional optimized signal control. This study provides a scientific basis for developing traffic management measures for energy saving and emission reduction in transport systems with mixed traffic.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3