Variation of Stem CO2 Efflux and Estimation of Its Contribution to the Ecosystem Respiration in an Even-Aged Pure Rubber Plantation of Hainan Island

Author:

Song Bo123ORCID,Wu Zhixiang23ORCID,Dong Lu14,Yang Chuan23,Yang Siqi123

Affiliation:

1. College of Ecology and Environment, Hainan University, Haikou 570228, China

2. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

3. Hainan Danzhou Tropical Agro-Ecosystem National Observation and Research Station, Danzhou 571737, China

4. Hainan Research Academy of Environmental Sciences, Haikou 571127, China

Abstract

The stem CO2 efflux (Es) plays an important role in the carbon balance in forest ecosystems. However, a majority of studies focus on ecosystem flux, and little is known about the contribution of stem respiration to ecosystem respiration (Reco) for rubber (Hevea brasiliensis) plantations. We used a portable CO2 analyzer to monitor the rate of Es in situ at different heights (1.5 m, 3.0 m and 4.5 m) in an even-aged rubber plantation from 2019 to 2020. Our results showed that Es exhibited a significant seasonal difference with a minimum value in April and a maximum in September. The mean annual rate of Es at 3.0 m in height (1.65 ± 0.52 μmol·m−2·s−1) was slightly higher than Es at 4.5 m in height (1.56 ± 0.59 μmol·m−2·s−1) and Es at 1.5 m in height (1.51 ± 0.48 μmol·m−2·s−1). No obvious differences in vertical variations were found. An area-based method (Ea) and a volume-based method (Ev) were used to estimate stem respiration at stand levels. One-way ANOVA showed that Ea had no obvious differences in vertical variation (p = 0.62), and Ev indicated differences in vertical variation (p < 0.05). Therefore, the Ea chamber-based measurements at breast height were reasonable and practical extrapolation proxies of stem respiration in an even-aged rubber plantation. With the use of the area-based method, the stem carbon values released from a mature rubber forest were estimated to be 1.214 t C·hm−2·a−1 in 2019 and 1.414 t C·hm−2·a−1 in 2020. Ea/Reco and Ev/Reco showed seasonal changes, with a minimum value in April and a maximum value in December. The leaf area index (LAI) and soil volumetric moisture content (VWC) were the major impact factors of Ea/Reco in an even-aged pure rubber plantation.

Funder

Hainan Province Science and Technology Special Fund

China Agriculture Research System

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3