Design and Control of Hydraulic Power Take-Off System for an Array of Point Absorber Wave Energy Converters

Author:

Wang Dengshuai1,Zhang Zhenquan1,Hai Yunpeng2,Liu Yanjun12ORCID,Xue Gang12

Affiliation:

1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China

2. Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China

Abstract

The development of wave energy converter (WEC) arrays is an effective way to reduce the cost of levelized energy and facilitate the commercialization of WECs. This study proposes a hydraulic power take-off (PTO) system for an array of point absorber wave energy converters (PA-WECs) and designs a control system using a novel algorithm called the improved simplified universal intelligent PID (ISUIPID) controller and the adaptive matching controller including an improved artificial gorilla troops optimizer (IGTO) to improve and stabilize the output power of PA-WEC arrays. Simulations under varying irregular wave states have been carried out to verify the validity of the mathematical model and the control system. The results show that the designed IGTO has faster convergence speed and better convergence accuracy in solving the optimal linear damping coefficient of the generator, and the proposed ISUIPID controller provides superior performance in tracking the speed of the hydraulic motor under the changing sea states. In addition, the capture power and output power of the array of PA-WECs are improved and the electrical energy can be output stably under the designed control system. The array of PA-WECs with the proposed control system will become an independent, stable, efficient, and sustainable power supply system.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3