Calculation of Carbon Emissions and Study of the Emission Reduction Path of Conventional Public Transportation in Harbin City

Author:

Zhang Wenhui1,Zhou Ge1,Song Ziwen1ORCID,Shi Xintao1,Ye Meiru1,Chen Xirui1,Xiang Yuhao1,Zheng Wenzhao1,Zhang Pan1

Affiliation:

1. School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China

Abstract

As the northernmost megacity in China, the long winters, large population size, and unsustainable transport structure in Harbin determine that the city will produce relatively large carbon emissions. The transportation industry is one of the three greenhouse gas emission sources; therefore, the development of low-carbon transportation is imperative. This work compares commonly used carbon emission measurement methods and chooses a mileage method to classify the carbon emissions of conventional buses of different energy types used in Harbin in 2020. A multi-factor grey prediction model was constructed to predict the population size of Harbin and the number of conventional buses. After that, a scenario analysis method was used to analyze the fuel structure of buses in Harbin from three perspectives: a pessimistic scenario, a baseline scenario, and an optimistic scenario. The carbon emissions of conventional buses were calculated for Harbin from 2023 to 2030. Finally, by combining the prediction results and factors influencing carbon emission, a regular bus path to minimize carbon emissions is proposed. The outcome of this study shows that the carbon emission environment in Harbin will be improved by reducing vehicle energy consumption, optimizing energy structure, standardizing driving behavior, building intelligent transportation, giving priority to public transportation, and improving the road network structure.

Funder

China Fundamental Research Funds for the Central Universities Category D Project Carbon Neutralization Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3