Identifying the Regions of a Space with the Self-Parameterized Recursively Assessed Decomposition Algorithm (SPRADA)

Author:

Molinié Dylan1ORCID,Madani Kurosh1,Amarger Véronique1,Chebira Abdennasser1

Affiliation:

1. LISSI Laboratory EA 3956, Sénart-FB Institute of Technology, Campus of Sénart, University of Paris-Est Créteil, 77567 Lieusaint, France

Abstract

This paper introduces a non-parametric methodology based on classical unsupervised clustering techniques to automatically identify the main regions of a space, without requiring the objective number of clusters, so as to identify the major regular states of unknown industrial systems. Indeed, useful knowledge on real industrial processes entails the identification of their regular states, and their historically encountered anomalies. Since both should form compact and salient groups of data, unsupervised clustering generally performs this task fairly accurately; however, this often requires the number of clusters upstream, knowledge which is rarely available. As such, the proposed algorithm operates a first partitioning of the space, then it estimates the integrity of the clusters, and splits them again and again until every cluster obtains an acceptable integrity; finally, a step of merging based on the clusters’ empirical distributions is performed to refine the partitioning. Applied to real industrial data obtained in the scope of a European project, this methodology proved able to automatically identify the main regular states of the system. Results show the robustness of the proposed approach in the fully-automatic and non-parametric identification of the main regions of a space, knowledge which is useful to industrial anomaly detection and behavioral modeling.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Artificial Intelligence,Engineering (miscellaneous)

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3