Multi-Task Representation Learning for Renewable-Power Forecasting: A Comparative Analysis of Unified Autoencoder Variants and Task-Embedding Dimensions

Author:

Nivarthi Chandana Priya1ORCID,Vogt Stephan1ORCID,Sick Bernhard1ORCID

Affiliation:

1. Intelligent Embedded Systems, University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany

Abstract

Typically, renewable-power-generation forecasting using machine learning involves creating separate models for each photovoltaic or wind park, known as single-task learning models. However, transfer learning has gained popularity in recent years, as it allows for the transfer of knowledge from source parks to target parks. Nevertheless, determining the most similar source park(s) for transfer learning can be challenging, particularly when the target park has limited or no historical data samples. To address this issue, we propose a multi-task learning architecture that employs a Unified Autoencoder (UAE) to initially learn a common representation of input weather features among tasks and then utilizes a Task-Embedding layer in a Neural Network (TENN) to learn task-specific information. This proposed UAE-TENN architecture can be easily extended to new parks with or without historical data. We evaluate the performance of our proposed architecture and compare it to single-task learning models on six photovoltaic and wind farm datasets consisting of a total of 529 parks. Our results show that the UAE-TENN architecture significantly improves power-forecasting performance by 10 to 19% for photovoltaic parks and 5 to 15% for wind parks compared to baseline models. We also demonstrate that UAE-TENN improves forecast accuracy for a new park by 19% for photovoltaic parks, even in a zero-shot learning scenario where there is no historical data. Additionally, we propose variants of the Unified Autoencoder with convolutional and LSTM layers, compare their performance, and provide a comparison among architectures with different numbers of task-embedding dimensions. Finally, we demonstrate the utility of trained task embeddings for interpretation and visualization purposes.

Funder

BMWi

Publisher

MDPI AG

Subject

Artificial Intelligence,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Task Representation Learning with Temporal Attention for Zero-Shot Time Series Anomaly Detection;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3