Autoencoder Feature Residuals for Network Intrusion Detection: One-Class Pretraining for Improved Performance
Author:
Affiliation:
1. Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
2. Data Science, Mathematical Sciences, and Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
Abstract
Publisher
MDPI AG
Subject
Artificial Intelligence,Engineering (miscellaneous)
Link
https://www.mdpi.com/2504-4990/5/3/46/pdf
Reference42 articles.
1. Kim, J., Shin, N., Jo, S.Y., and Kim, S.H. (2017, January 13–16). Method of intrusion detection using deep neural network. Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Seoul, Republic of Korea.
2. A systematic literature review of methods and datasets for anomaly-based network intrusion detection;Yang;Comput. Secur.,2022
3. Andresini, G., Appice, A., Mauro, N.D., Loglisci, C., and Malerba, D. (2019, January 17–19). Exploiting the Auto-Encoder Residual Error for Intrusion Detection. Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS & PW), Stockholm, Sweden.
4. Long, C., Xiao, J., Wei, J., Zhao, J., Wan, W., and Du, G. (2022, January 13–16). Autoencoder ensembles for network intrusion detection. Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea.
5. Representation learning-based network intrusion detection system by capturing explicit and implicit feature interactions;Wang;Comput. Secur.,2022
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative analysis of prediction results of multiple machine learning algorithms on LT-FS-Identity: Intrusion detection Dataset in Nuclear power plant systems;2023 10th International Forum on Electrical Engineering and Automation (IFEEA);2023-11-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3