Classification Confidence in Exploratory Learning: A User’s Guide

Author:

Salamon Peter1ORCID,Salamon David1,Cantu V. Adrian2,An Michelle3,Perry Tyler2,Edwards Robert A.4ORCID,Segall Anca M.5ORCID

Affiliation:

1. Department of Mathematics, San Diego State University, San Diego, CA 92182, USA

2. Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA

3. Bioinformatics and Medical Informatics Program, San Diego State University, San Diego, CA 92182, USA

4. Flinders Accelerator for Microbiome Exploration, Flinders University, Flinders, Adelaide, SA 5001, Australia

5. Department of Biology, San Diego State University, San Diego, CA 92182, USA

Abstract

This paper investigates the post-hoc calibration of confidence for “exploratory” machine learning classification problems. The difficulty in these problems stems from the continuing desire to push the boundaries of which categories have enough examples to generalize from when curating datasets, and confusion regarding the validity of those categories. We argue that for such problems the “one-versus-all” approach (top-label calibration) must be used rather than the “calibrate-the-full-response-matrix” approach advocated elsewhere in the literature. We introduce and test four new algorithms designed to handle the idiosyncrasies of category-specific confidence estimation using only the test set and the final model. Chief among these methods is the use of kernel density ratios for confidence calibration including a novel algorithm for choosing the bandwidth. We test our claims and explore the limits of calibration on a bioinformatics application (PhANNs) as well as the classic MNIST benchmark. Finally, our analysis argues that post-hoc calibration should always be performed, may be performed using only the test dataset, and should be sanity-checked visually.

Funder

NIDDK

Computational and Experimental Resources for Virome Analysis in Inflammatory Bowel Disease

Publisher

MDPI AG

Subject

Artificial Intelligence,Engineering (miscellaneous)

Reference33 articles.

1. Gawlikowski, J., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., and Roscher, R. (2021). A Survey of Uncertainty in Deep Neural Networks. arXiv.

2. Kuppers, F., Kronenberger, J., Shantia, A., and Haselhoff, A. (2020, January 14–19). Multivariate Confidence Calibration for Object Detection. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA.

3. Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. arXiv.

4. Jiang, H., Kim, B., Guan, M.Y., and Gupta, M. (2018). To Trust or Not to Trust A Classifier. arXiv.

5. Zhang, J., Kailkhura, B., and Han, T.Y.J. (2020, January 13–18). Mix-n-match: Ensemble and compositional methods for uncertainty calibration in deep learning. Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3