Multi-Device Parallel MRI Reconstruction: Efficient Partitioning for Undersampled 5D Cardiac CINE

Author:

López-Ales Emilio1ORCID,Menchón-Lara Rosa-María1ORCID,Simmross-Wattenberg Federico1ORCID,Rodríguez-Cayetano Manuel1ORCID,Martín-Fernández Marcos1ORCID,Alberola-López Carlos1ORCID

Affiliation:

1. Laboratorio de Procesado de Imagen, Universidad de Valladolid, Campus Miguel Delibes sn., 47011 Valladolid, Spain

Abstract

Cardiac CINE, a form of dynamic cardiac MRI, is indispensable in the diagnosis and treatment of heart conditions, offering detailed visualization essential for the early detection of cardiac diseases. As the demand for higher-resolution images increases, so does the volume of data requiring processing, presenting significant computational challenges that can impede the efficiency of diagnostic imaging. Our research presents an approach that takes advantage of the computational power of multiple Graphics Processing Units (GPUs) to address these challenges. GPUs are devices capable of performing large volumes of computations in a short period, and have significantly improved the cardiac MRI reconstruction process, allowing images to be produced faster. The innovation of our work resides in utilizing a multi-device system capable of processing the substantial data volumes demanded by high-resolution, five-dimensional cardiac MRI. This system surpasses the memory capacity limitations of single GPUs by partitioning large datasets into smaller, manageable segments for parallel processing, thereby preserving image integrity and accelerating reconstruction times. Utilizing OpenCL technology, our system offers adaptability and cross-platform functionality, ensuring wider applicability. The proposed multi-device approach offers an advancement in medical imaging, accelerating the reconstruction process and facilitating faster and more effective cardiac health assessment.

Funder

MINECO

Agencia Estatal de Investigación

Publisher

MDPI AG

Reference35 articles.

1. Reconstruction techniques for cardiac cine MRI;Insights Imaging,2019

2. Technical challenges of functional magnetic resonance imaging;Turner;IEEE Eng. Med. Biol. Mag.,2000

3. Cardoso, M. (2017). Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment, Springer.

4. 5D whole-heart sparse MRI;Feng;Magn. Reson. Med.,2018

5. Accelerated Cardiac MRI Cine with Use of Resolution Enhancement Generative Adversarial Inline Neural Network;Yoon;Radiology,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3