Sensing of Continuum Robots: A Review

Author:

Sincak Peter1ORCID,Prada Erik1ORCID,Miková Ľubica1ORCID,Mykhailyshyn Roman2ORCID,Varga Martin1ORCID,Merva Tomas1ORCID,Virgala Ivan1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia

2. Walker Department of Mechanical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA

Abstract

The field of continuum robotics is rapidly developing. The development of new kinematic structures, locomotion principles and control strategies is driving the development of new types of sensors and sensing methodologies. The sensing in continuum robots can be divided into shape perception and environment perception. The environment perception is focusing on sensing the interactions between the robot and environment. These sensors are often embedded on an outer layer of the robots, so the interactions can be detected. The shape perception is sensing the robot’s shape using various principles. There are three main groups of sensors that use the properties of electricity, magnetism and optics to measure the shape of the continuum robots. The sensors based on measuring the properties of electricity are often based on measuring the electrical resistance or capacitance of the flexible sensor. Sensors based on magnetism use properties of permanent magnets or coils that are attached to the robot. Their magnetic field, flux or other properties are then tracked, and shape reconstruction can be performed. The last group of sensors is mostly based on leveraging the properties of traveling light through optical fibers. There are multiple objectives of this work. Objective number one is to clearly categorize the sensors and make a clear distinction between them. Objective number two is to determine the trend and progress of the sensors used in continuum robotics. And finally, the third objective is to define the challenges that the researchers are currently facing. The challenges of sensing the shape or the interaction with the environment of continuum robots are currently in the miniaturization of existing sensors and the development of novel sensing methods.

Funder

VEGA

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Curvature Sensing and Control of Soft Continuum Robots Using e-Textile Sensors;Applied System Innovation;2024-09-13

2. Design optimization and simulation of a 3D printed cable-driven continuum robot using IKM-ANN and nTop software;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3