Patient Confidential Data Hiding and Transmission System Using Amplitude Quantization in the Frequency Domain of ECG Signals

Author:

Chen Shuo-Tsung12,Ye Ren-Jie3,Wu Tsung-Hsien4,Cheng Chun-Wen1,Zhan Po-You1,Chen Kuan-Ming1,Zhong Wan-Yu1

Affiliation:

1. Department of Medical Informatics, Chung Shan Medical University, Taichung 40201, Taiwan

2. Department of Information Center, Chung Shan Medical University Hospital, Taichung 40201, Taiwan

3. Graduate School of Applied Chinese Studies, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan

4. Bachelor’s Program in Business Management, Fu Jen Catholic University, New Taipei City 242062, Taiwan

Abstract

The transform domain provides a useful tool in the field of confidential data hiding and protection. In order to protect and transmit patients’ information and competence, this study develops an amplitude quantization system in a transform domain by hiding patients’ information in an electrocardiogram (ECG). In this system, we first consider a non-linear model with a hiding state switch to enhance the quality of the hidden ECG signals. Next, we utilize particle swarm optimization (PSO) to solve the non-linear model so as to have a good signal-to-noise ratio (SNR), root mean square error (RMSE), and relative root mean square error (rRMSE). Accordingly, the distortion of the shape in each ECG signal is tiny, while the hidden information can fulfill the needs of physiological diagnostics. The extraction of hidden information is reversely similar to a hiding procedure without primary ECG signals. Preliminary outcomes confirm the effectiveness of our proposed method, especially an Amplitude Similarity of almost 1, an Interval RMSE of almost 0, and SNRs all above 30.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3