Abstract
Extracting representative images of tourist attractions from geotagged photos is beneficial to many fields in tourist management, such as applications in touristic information systems. This task usually begins with clustering to extract tourist attractions from raw coordinates in geotagged photos. However, most existing cluster methods are limited in the accuracy and granularity of the places of interest, as well as in detecting distinct tags, due to its primary consideration of spatial relationships. After clustering, the challenge still exists for the task of extracting representative images within the geotagged base image data, because of the existence of noisy photos occupied by a large area proportion of humans and unrelated objects. In this paper, we propose a framework containing an improved cluster method and multiple neural network models to extract representative images of tourist attractions. We first propose a novel time- and user-constrained density-joinable cluster method (TU-DJ-Cluster), specific to photos with similar geotags to detect place-relevant tags. Then we merge and extend the clusters according to the similarity between pairs of tag embeddings, as trained from Word2Vec. Based on the clustering result, we filter noise images with Multilayer Perceptron and a single-shot multibox detector model, and further select representative images with the deep ranking model. We select Beijing as the study area. The quantitative and qualitative analysis, as well as the questionnaire results obtained from real-life tourists, demonstrate the effectiveness of this framework.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Reference48 articles.
1. UNTWO Annual Report 2017
https://www.unwto.org/global/publication/unwto-annual-report-2017
2. VCG: Exploiting visual contents and geographical influence for Point-of-Interest recommendation
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献