A Spatiotemporal Dilated Convolutional Generative Network for Point-Of-Interest Recommendation

Author:

Liu Chunyang,Liu Jiping,Xu Shenghua,Wang Jian,Liu Chao,Chen Tianyang,Jiang Tao

Abstract

With the growing popularity of location-based social media applications, point-of-interest (POI) recommendation has become important in recent years. Several techniques, especially the collaborative filtering (CF), Markov chain (MC), and recurrent neural network (RNN) based methods, have been recently proposed for the POI recommendation service. However, CF-based methods and MC-based methods are ineffective to represent complicated interaction relations in the historical check-in sequences. Although recurrent neural networks (RNNs) and its variants have been successfully employed in POI recommendation, they depend on a hidden state of the entire past that cannot fully utilize parallel computation within a check-in sequence. To address these above limitations, we propose a spatiotemporal dilated convolutional generative network (ST-DCGN) for POI recommendation in this study. Firstly, inspired by the Google DeepMind’ WaveNet model, we introduce a simple but very effective dilated convolutional generative network as a solution to POI recommendation, which can efficiently model the user’s complicated short- and long-range check-in sequence by using a stack of dilated causal convolution layers and residual block structure. Then, we propose to acquire user’s spatial preference by modeling continuous geographical distances, and to capture user’s temporal preference by considering two types of time periodic patterns (i.e., hours in a day and days in a week). Moreover, we conducted an extensive performance evaluation using two large-scale real-world datasets, namely Foursquare and Instagram. Experimental results show that the proposed ST-DCGN model is well-suited for POI recommendation problems and can effectively learn dependencies in and between the check-in sequences. The proposed model attains state-of-the-art accuracy with less training time in the POI recommendation task.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Collaborative Filtering Using Geographical Information;2023 8th International Conference on Information Technology and Digital Applications (ICITDA);2023-11-17

2. CrowdWaterSens: An uncertainty-aware crowdsensing approach to groundwater contamination estimation;Pervasive and Mobile Computing;2023-05

3. A deep meta-level spatio-categorical POI recommender system;International Journal of Data Science and Analytics;2023-03-07

4. SmartWaterSens: A Crowdsensing-based Approach to Groundwater Contamination Estimation;2022 IEEE International Conference on Smart Computing (SMARTCOMP);2022-06

5. The Geographies of Expatriates’ Cultural Venues in Globalizing Shanghai: A Geo-Information Approach Applied to Social Media Data Platform;ISPRS International Journal of Geo-Information;2021-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3