Predicting Future Locations of Moving Objects by Recurrent Mixture Density Network

Author:

Chen Rui,Chen Mingjian,Li Wanli,Guo Naikun

Abstract

Accurate and timely location prediction of moving objects is crucial for intelligent transportation systems and traffic management. In recent years, ubiquitous location acquisition technologies have provided the opportunity for mining knowledge from trajectories, making location prediction and real-time decisions more feasible. Previous location prediction methods have mostly developed on the basis of shallow models whereas shallow models are not competent for some tricky challenges such as multi-time-step location coordinates prediction. Motivated by the current study status, we are dedicated to a deep-learning-based approach to predict the coordinates of several future locations of moving objects based on recent trajectory records. The method of this work consists of three successive parts: trajectory preprocessing, prediction model construction, and post-processing. In this work, a prediction model named the bidirectional recurrent mixture density network (BiRMDN) was constructed by integrating the long short-term memory (LSTM) and mixture density network (MDN) together. This model has the ability to learn long-term contextual information from recent trajectory and model real-valued location coordinates. We employed a vessel trajectory dataset for the implementation of this approach and determined the optimal model configuration after several parameter analysis experiments. Experimental results involving a performance comparison with other widely used methods demonstrate the superiority of the BiRMDN model.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference38 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3